

Pumped Storage Hydropower Potential and Opportunities

Stuart M. Cohen, Ph.D. MWECA Annual Meeting Denver, Colorado December 11, 2024

Pumped Storage Hydropower (PSH) Has Potential Balance the Grid and Integrate Variable Renewables

- Storage provides many critical grid services without direct emissions
 - Energy balancing

- Operating reserves

– Firm capacity

- Grid stability
- Storage helps facilitate variable renewable deployment at lower cost
- PSH is a proven storage technology with substantial growth potential

NREL is Developing Data and Tools to Better Inform Discussions About PSH Deployment

A Bottom-Up Cost Model Offers Unprecedented Detail in a Public-Facing Tool

- Spreadsheet model allows user-input site specifications and assumptions
- Calculations use industry-vetted formulas and data (e.g., EPRI PSH guide)
- Cost results can be explored for one site or many

https://www.nrel.gov/water/pumped-storage-hydropower-cost-model.html

The Spreadsheet Offers Versatile Cost Estimation

Inputs & Assumptions

Site Related

Location	United States	#
Avg. Max Upper Reservoir Depth	101	feet
Upper Reservoir Area	191	acres
Avg. Max Lower Reservoir Depth	120	feet
Lower Reservoir Area	163	acres
Nominal (Max) Head	1560	feet
Total Conveyance Length (vert+horiz)	14394	feet
Avg. Upper Dam Height	120	ft
Upper Dam Crest Length	1300	ft
Avg. Lower Dam Height	60	ft
Lower Dam Crest Length	1100	ft
Acreage to be acquired	2185	acres
Generation Time	18.5	hours

Condition Related

Tunneling Condition	Average	#
Access Road, Terrain	Flat	#
Access Road, Type	New	#
Highway Realignment	Yes	#
Access Road	3.61	miles
Access Tunnel, Length	1.25	miles
Water Supply =	No	#
Water Supply Cost =	200	\$/kW

Vertical

Adverse

Horizontal

Underground

Underground

#

#

#

#

#

Technology Related

U. Reservoir Intake/Outlet
L. Reservoir Intake/Outlet
Power Station Structure Geology
Power Station
Penstock

Project Related

Inflation Factor	Yes	#
Mobilization/Demobilization =	5%	%
Material/Equipment % =	100%	%
Sales Tax =	6%	%
Contingency =	33%	%
EPC Cost =	25%	%
Developer Cost =	3%	%
Overhead & Profit =	7%	%

The Spreadsheet Offers Versatile Cost Estimation

Output Specifications

miles ac-ft ac-ft CY CY ac-ft MWh cfs feet feet cfs cfs feet # feet # #

Project Related

Conveyance Length	2.726
Avg. Upper Reservoir Volume =	19291
Avg. Lower Reservoir Volume =	19560
Total Upper Dam Volume =	2385110
Total Lower Dam Volume =	691570
Active Storage =	16397.35
Energy Storage =	18593
Mean Gen Discharge =	10725
Min Gross Head =	1092
Mean Gross Head =	1326
Min Gen Discharge =	9733
Max Gen Discharge =	11633
Nominal Tunnel Dia =	25.4
No. Tunnels =	1
Adjusted Tunnel Dia =	25.4
L/H =	10.9
Surge Chambers	Yes

Min Gen Headloss =	57.1	feet
Mean Gen Headloss =	68.3	feet
Max Gen Headloss =	79.4	feet
Net Head @ Min Gen Discharge =	1035	feet
Net Head @ Mean Gen Discharge =	1258	feet
Net Head @ Max Gen Discharge =	1481	feet
Min Plant Gen Power (Firm Capacity) =	750.5	MW
Mean Plant Gen Power =	1005.0	MW
Max Plant Gen Power =	1283.3	MW
No. Units =	4	#
Unit Rating =	320.8	MW
Max Penstock Velocity =	28	fps
Max Draft Tube Tunnel Velocity =	10	fps
Penstock Dia =	11	feet
Draft Tube Tunnel Dia =	20	feet
Pump Time =	22.2	hrs
Mean Pump Discharge =	8937	cfs
Mean Pump Headloss =	48.7	feet
Mean Pump Net Head =	1375	feet
Mean Pump Power =	915	MW
Tranmission Terrain Multiplier =	1.75	#
Tranmission Type Multiplier =	1.60	#

The Spreadsheet Offers Versatile Cost Estimation

Cost Components	Include in Total? (Yes or No - User Option)	Unit	Qty	Base Unit Cost (\$/unit) (Includes material, equipment rental, installation labor)	Locational Factor	Inflation Factor (2022)	Market Adjustment Factor (MAF)	Adjusted Unit Cost (\$)	Override Qty	Override Unit Cos (\$)	t Coi	Total mponent Cost (\$)	% of total cost (compone nt)	% of total cost (category)
Land and Land Rights	Yes	Acres	2,185	\$ 3,093.33	1.00	2.41	1.00	\$ 7,444	0	s -	\$	16,264,166	0.69%	0.69%
Powerplant Structure	Yes	kW	1,283,325	\$ 39.06	1.00	2.41	1.30	\$ 122	0	ş -	\$	156,806,248	6.64%	6.64%
Reservoirs, Dams, and Waterways											_			
Upper Reservoir Dam and Spillway	Yes	CY	2,385,110	\$ 7.92	1.00	2.41	1.40	\$ 26.67	0	s -	\$	63,610,836	2.69%	9.09%
Upper Reservoir Intake/Outlet	Yes	#	1	\$ 1,483,192.61	1.00	2.41	2.00	\$ 7,138,076.30	0	\$-	\$	7,138,076	0.30%	
Surge Facilities	Yes	LS	40%	NA				NA	0%	NA	<u>۲</u>	103,101,434	4.37%	
Lower Reservoir Intake/Outlet	Yes	#	1	\$ 6,772,919.08	1.00	2.41	1.30	\$ 21,187,166.38	0	ş -	\$	21,187,166	0.90%	
Lower Reservoir Dam and Spillway	Yes	CY	691,570	\$ 8.35	1.00	2.41	1.40	\$ 28.13	0	ş -	\$	19,455,802	0.82%	
Water Conductors														
Upper Low & High Pressure Tunnels	Yes	Ft	6.268	\$ 3,667,29	1.00	2.41	1.60	\$ 14,119,48		s -	s	88,504,416	3,75%	10.92%
Vertical Shafts	Yes	Ft	1.326	\$ 4,761.61	1.00	2.41	1.80	\$ 20.624.35		s.	ŝ	27.347.887	1.16%	
Penstock Tunnels	Yes	Ft	1 326	\$ 4,825,82	1.00	2.41	1 90	\$ 22,063,68		š.	ŝ	29 256 438	1 24%	
Draft Tube Tunnels	Yes	Ft	800	\$ 6,600,06	1.00	2 41	1 90	\$ 30,175,53		š.	ŝ	24 140 428	1 02%	
Tailrace Tunnels	Ves	Ft	6 268	\$ 3,667,29	1.00	2.41	1.60	\$ 14 119 48		č.	š	88 504 416	3 75%	
Surface Penstock	Ves	Ft	0,200	\$ 5,007.25	1.00	2.41	1.00	\$	0	č .	š	00,001,110	0.00%	
	105			2	1.00	2.12	1.50	5	Ŭ	2	Ĩ		0.0070	
Powerstation Equipment														
Pump/Motors	Yes	LS	1	\$ -	1.00	1.00	1.00	s -	0	s -	\$		0.00%	22.96%
Generator/Turbines	Yes	kW	-	s -	1.00	1.00	1.00	s -	0	s -	\$	-	0.00%	
Total Powerstation	Yes	kW	1,283,325	\$ 103.21	1.00	2.41	1.70	\$ 422.23	0	s -	\$	541,852,349	22.96%	
Dende Dellanada Deldana and Assess														
Access Deede	N	Miles	2.64	£ 100.000.00	1.00	2.44	1.00	6 454 704 75	0	e .		1 641 800	0.07%	1 0164
Access Roads	Yes	willes	5.61	\$ 189,000.00	1.00	2.41	1.00	5 454,/94./5	0	s -	-	1,641,809	0.07%	1.0170
Access lunnels	Yes	Pt of	0000	\$ 2,555.82	1.00	2.41	1.00	\$ 6,150.12	0	> - Ç	\$ 6	40,590,803	1.72%	
Highway Realignment	Yes	70	25%						0%	NA	\$	410,452	0.02%	
Switchyard	Yes	LS	1	\$ 16,726,800.00	1.00	2.41	1.00	\$ 40,250,057.23	0	s -	\$	40,250,057	1.71%	1.71%
Transmission Lines	Yes	Miles	13.5	4										
					-									
Others				Systen	n Cos	51								
Water Supply	Yes	kW	-	gouten										
Indirect Costs				Total Di		nd In	direct C.	ant C		ć		2 26	0 200	120
Mobilization/Demobilization	Yes	96	596	Total DI	rect a	na in	urect C	USL S		Ş		2,30	0,308	0,130
Sales Tax	Yes	96	E94					NY STREET STREET						• 10 (* 1. V. 2. V.
Contingency	Vac	94	22%	C/LANI IN	Aav I	louvo	Canadi	1		ć			1	020
EPC Cost	Vec	94	25%	- 3/KVV []	viax. r	ower	Capaci	Ly)		Ş			1	,039
Davalanar Cost	Vac	20	2070											
Overhand & Profit	Vac	20	270	C/LANIL	D A and	Ener	Course	atten al		ć				00
overhead & Front	163	~	770	\$/KWN	iviax.	cner	gy Capa	city)		Ş				99

Resource Assessment Identifies Utility-Scale Opportunities for Detailed Site Evaluation

- 1. Geospatial analysis finds potential reservoirs using topography data.
- 2. Reservoirs are filtered out if they intersect with incompatible land uses, e.g., critical habitats, national parks.
- 3. Upper and lower reservoirs are paired based on distance, head, and size similarity.
- 4. A set of non-overlapping systems are selected based on lowest \$/kW capital cost (*using the bottom-up cost model*).

Pumped Storage Hydropower Supply Curves

NREL has developed an interactive map and geospatial data showing pumped storage hydropower (PSH) supply curves, which characterize the quantity, quality, and cost of PSH resources.

Interactive Map and Geospatial Data

The PSH geospatial data include storage duration, paired reservoir volume, capacity, distance between reservoirs, head height, transmission spurline distance, transmission spurline costs, and total cost. Data can be downloaded directly from the interactive map.

https://www.nrel.gov/gis/psh-supply-curves.html

Resource Data Can Be Explored With an Interactive Web Tool

- Select scenario: storage duration, dam height range, technical exclusions (left)
- 2. Use filters to screen sites: cost, capacity, etc. (right)
- Determine one or more reservoirs to assess further by clicking on sites or querying custom regions
- 4. Gather site-specific details
- 5. Download data

https://www.nrel.gov/gis/psh-supply-curves.html

- ✓ Closed-loop PSH
- ✓ Add-on PSH to existing reservoirs
- Open pit mine reservoir opportunities
- Concrete ring dams on flat mesas (soon)

Life Cycle Analysis (LCA) Enables GHG Impacts Comparisons with Other Technologies

- NREL has completed the first-ever LCA for new closed-loop PSH
 - Includes GHG impacts from construction and operation but not end-of-life or reservoir emissions
 - Accounts for future changes in the carbon intensity of the charging electricity mix
- PSH has lower life cycle GHG impacts than competing storage technologies
- Article published in *Environmental* Science & Technology

https://pubs.acs.org/doi/10.1021/acs.est.2c09189

A Versatile Web App Will Allow Users to Explore Life Cycle GHG Impacts of Any Candidate Site

Medium	*
_ Site Type *	_
Two new reservoirs	-
Reservoir Liner Material *	_
Unlined	-
Dam Material *	_
Earthen	-
Operational Lifetime *	_
80 Years	-
Round Trip Efficiency*	_
70%	•
Stored electricity grid mix *	•
About Grid Mixes	
CREATE SCENARIO	

English: Cine #

Basic Mode allows users to
chose from a small set of
design options and compare
representative PSH systems

Reservoirs

- Reservoir Liner Material *	
Unlined	Ŧ
The PSH-LCA model ourrently supports only one reservoir liner material type for reservoirs.	r both
- Dam Material *	
Earthen	Ŧ
The PSH-LCA model currently supports only one dam material type for both dat	ms.
Upper Reservoir	
Reservoir Volume (m³) *	
5000000	m3
Reservoir Surface Area (m²) *	
500000	m2
Upper Dam	
Average Dam Height (m) *	
20	m
Crest Width (m)*	
6	m
- Average Crest Length (m) *	
50	m

Advanced Mode allows users to enter detailed specifications to evaluate specific PSH sites

Pumped Storage Hydropower Life Cycle Assessment

The pumped storage hydropower life cycle assessment (PSH-LCA) tool provides greenhouse gas emission (GHG) estimates for the life from a predefined (basic) scenario or build your own (advanced) to get started.

Analysis

+ BASIC SCENARIO + ADVANCED SCENARIO Scenario 1 Scenario 2 Inputs Dam Material Earthen Earthen Facility Size 👔 Medium Medium Operational Lifetime 80 Years 80 Years Reservoir Liner Material Unlined Unlined Round Trip Efficiency 70% 70% Site Type Two new reservoirs Two new reservoir: 95% reduced grid CO2 emissions by Grid Mix 🚯 Mid case 2035 Grid Mix Details Grid Mix Details 2020-2025 2035-2040 2050-2060 2080-2090 2020-2025 2035-2040 2050-2060 2080-2090

https://www.nrel.gov/water/life-cycle-assessment-closedloop-pumped-storage-hydropower-facilities.html NREL | 11

GHG Impacts Can Be Viewed in Several Ways

- Life cycle GHG emissions can be compared by component, material, or life cycle phase
- Most PSH GHG impacts arise from electricity used for pumping
- Future work
 - Integrate the PSH cost model into the same web interface
 - Link to the PSH resource massource massourc

GHG Emissions (g CO ₂ e/kWh)		
Total	346.28	156.19
Components		^
Concrete Anchors	0.0001	0.0001
Dam	0.2844	0.2844
Generator	0.1363	0.1363
Headrace	0.0321	0.0321
Penstock	0.3300	0.3300
Powerhouse	0.0200	0.0200
Reservoir	0.3685	0.3685
Surge Chamber	0.1374	0.1374
Stored Electricity	344.69	154.61
Tailrace	0.0543	0.0543
Transformer	0.0737	0.0737
Transmission Line	0.0554	0.0554
Pump Turbine	0.0925	0.0925
Materials		~
Life Cycle Phase		^
Construction Activities	3.8457	3.8457
Construction Materials	1.2548	1.2548
Operations	341.18	151.09

https://www.nrel.gov/water/life-cycle-assessment-closed-loop-pumped-storage-hydropower-facilities.html

Capacity Expansion Modeling Uses PSH Cost and Resource Data to Explore Deployment Potential

- Resource and cost data form a supply curve
- PSH supply curves are used along with other technology cost, resource, and performance data in the ReEDS grid planning model
- ReEDS finds the least-cost mix of generation, transmission, and storage technologies through 2050 or beyond
 - Sub-state level resolution
 - Hourly data with representative periods
 - High-resolution resource and load profiles
 - Constraints for energy, capacity, flexibility, and policy requirements
 - Open-access code and data

ReEDS Enables Broad Scenario Analysis to Explore PSH Opportunities

- PSH deployment can be projected under alternative scenario assumptions
- Local market potential can be related to PSH site quality and grid needs
- Scenarios can quantify how PSH competes with and complements other technologies
- Modeling also produces cost, price, emissions, and other impact metrics

Summary

- NREL has built a versatile suite of open data and tools to help understand the future role of PSH in the electric grid.
- Cost and resource assessment and grid modeling can find favorable scenarios for large-scale PSH deployment.
- Continued tool and data expansions will facilitate robust assessments of PSH costbenefit tradeoffs by hydropower stakeholders.

Thank You

www.nrel.gov/water/hydropower-research.html Stuart.Cohen@nrel.gov

PSH Cost Estimation

bit.ly/NRELWebPSHCostEst

PSH Resource Assessment

bit.ly/NRELPSHSupplyCurves

PSH Life Cycle Assessment

bit.ly/NRELWebLCAofPSH

Funding provided by the U.S. Department of Energy Water Power Technologies Office <u>HydroWIRES Initiative</u>

Transforming ENERGY

NREL/PR-6A40-92404

Photo from iStock-627281636